32 research outputs found

    On the minimum rank of the join of graphs and decomposable graphs

    Get PDF
    AbstractFor a given undirected graph G, the minimum rank of G is defined to be the smallest possible rank over all real symmetric matrices A whose (i,j)th entry is nonzero whenever i≠j and {i,j} is an edge in G. In this work we consider joins and unions of graphs, and characterize the minimum rank of such graphs in the case of ‘balanced inertia’. Several consequences are provided for decomposable graphs, also known as cographs

    On the difference between the maximum multiplicity and path cover number for tree-like graphs

    Get PDF
    For a given undirected graph G, the maximum multiplicity of G is defined to be the largest multiplicity of an eigenvalue over all real symmetric matrices A whose (i, j)th entry is non-zero whenever i ≠ j and {i, j} is an edge in G. The path cover number of G is the minimum number of vertex-disjoint paths occurring as induced subgraphs of G that cover all the vertices of G. We derive a formula for the path cover number of a vertex-sum of graphs, and use it to prove that the vertex-sum of so-called non-deficient graphs is non-deficient. For unicyclic graphs we provide a complete description of the path cover number and the maximum multiplicity (and hence the minimum rank), and we investigate the difference between path cover number and maximum multiplicity for a class of graphs referred to as block-cycle graphs

    On acyclic and unicyclic graphs whose minimum rank equals the diameter

    Get PDF
    AbstractThe minimum rank of a graph G is defined as the smallest possible rank over all symmetric matrices governed by G. It is well known that the minimum rank of a connected graph is at least the diameter of that graph. In this paper, we investigate the graphs for which equality holds between minimum rank and diameter, and completely describe the acyclic and unicyclic graphs for which this equality holds

    On the graph complement conjecture for minimum rank

    Get PDF
    AbstractThe minimum rank of a graph has been an interesting and well studied parameter investigated by many researchers over the past decade or so. One of the many unresolved questions on this topic is the so-called graph complement conjecture, which grew out of a workshop in 2006. This conjecture asks for an upper bound on the sum of the minimum rank of a graph and the minimum rank of its complement, and may be classified as a Nordhaus–Gaddum type problem involving the graph parameter minimum rank. The conjectured bound is the order of the graph plus two. Other variants of the graph complement conjecture are introduced here for the minimum semidefinite rank and the Colin de Verdière type parameter ν. We show that if the ν-graph complement conjecture is true for two graphs then it is true for the join of these graphs. Related results for the graph complement conjecture (and the positive semidefinite version) for joins of graphs are also established. We also report on the use of recent results on partial k-trees to establish the graph complement conjecture for graphs of low minimum rank

    Parameters Related to Tree-Width, Zero Forcing, and Maximum Nullity of a Graph

    Get PDF
    Tree-width, and variants that restrict the allowable tree decompositions, play an important role in the study of graph algorithms and have application to computer science. The zero forcing number is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by a graph. We establish relationships between these parameters, including several Colin de Verdière type parameters, and introduce numerous variations, including the minor monotone floors and ceilings of some of these parameters. This leads to new graph parameters and to new characterizations of existing graph parameters. In particular, tree-width, largeur d\u27arborescence, path-width, and proper path-width are each characterized in terms of a minor monotone floor of a certain zero forcing parameter defined by a color change rule
    corecore